Geotechnical Risks and Management Systems: An FHWA Perspective

Silas C. Nichols, PE, Senior Bridge Engineer - Geotechnical
Federal Highway Administration

Benjamin S. Rivers, PE, Geotechnical Engineer
Federal Highway Administration
Competing Demands…
Geotechnical Management

- Slope Management Systems
- Geohazard Management Systems
- Retaining Wall Inventories and Management
- Management of Geotechnical Systems & Appurtenances
 - Mechanically stabilized systems - Rock-bolts/anchors, dowels/soil-nails
 - Drainage systems
 - Rock-fall mitigation systems
 - Ground improvements
- Geotechnical Data Management Systems
Natural and Man-made Conditions affecting Slopes and Infrastructure
Hazard vs. Risk (Threat)

<table>
<thead>
<tr>
<th>Hazards</th>
<th>Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthquake</td>
<td>Earthquake occurs…</td>
</tr>
<tr>
<td>Hurricane</td>
<td>a) resulting in fatalities.</td>
</tr>
<tr>
<td>Abandoned Underground Mines</td>
<td>b) resulting in major injuries.</td>
</tr>
<tr>
<td>Karst Geology</td>
<td>c) Resulting in disruption of lives.</td>
</tr>
<tr>
<td>Landslides</td>
<td>d) damage to property…</td>
</tr>
<tr>
<td>Rockfall…</td>
<td></td>
</tr>
</tbody>
</table>
Risk Management

- Limit Surprises
- Minimize Management by Crisis
 - Operate Proactively instead of Reactively
- Reduce Long-term Costs
- Increase Likelihood of Success
 - “Do It Right” the First Time
- Prevent or Minimize Bad Things from Happening
- Optimize Designed Solutions

Minimize Threats Maximize Opportunities
Slope Failure Impacts and Management

Threats
- Closure
- Impedance to Mobility
- Economic Impact to Region & Users
- Cost of Repair/Remediation
- Injury and damages
- Loss of Life

Obstacles
- Resources (time, money, people)
- Convincing Decision Makers
- Proactive Funding Mechanism
- Mitigating Off-ROW threats before failure
Slope Management Systems

Motivation - ECONOMICS

- Problem of frequency and severity
- Costs often poorly tracked, but known to be great
- Seldom have funding to address all problems
- No “one size fits all” strategy available
Slope Management Systems

Limitations

• Do not “solve problem” – rather provides information needed to address problem most effectively
• Do not establish optimum strategy – rather enables implementation of selected strategy
• Are not self-sustaining – require maintenance and upgrades (funding and manpower!)
Slope Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Geology</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Ground-water</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Highway/Traffic Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Classification</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Detour time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site distance</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Travel distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Slide Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Deformation rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scarp dimensions</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Consequences

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatalities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle risk</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Road impact</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Annual cost</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Cost/benefit</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Future impact</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>
Other Features…

- Incorporate into GIS and integrated data layers (site info, photos, topographic, geologic maps, Google Earth Pro, etc.)
- Integrated Geologic Structure and Geotechnical Data
- Profiling Data
- Distinguish between modes of failure
- Condition assessments/performance monitoring of slopes and appurtenances (i.e. condition of rock-bolts/dowels, drains, mesh, fences, etc.)
- Effectiveness of Ditch (Catchment)
- Mitigation Cost
Example:

NH DOT Rock-cut Management System
Costs and Economic Strategies

Costs depend on...

- Size and severity of problem condition
- Maintenance/repair technique(s) used
- Site location
- Availability of equipment and materials
- Whether contracted or “in-house”
- Degree of improvement achieved

Economic Strategies

- Minimize costs
 - Immediate costs
 - Life-cycle costs
- Minimize risk
- Minimize “total cost”
- Maximize “value”
Take-Aways

Realistic Scope - Functional & Maintainable System

Support of Upper Management and Necessary Designated Resources
 • Clearly convey risks and benefits
 • Value-Added & Representation of Geotechnical Engineering

FHWA Initiatives
 • Guidance framework for slope/geotechnical management systems
 • Integration of Asset Management
 • Life-cycle considerations of geotechnical features and systems
 • Integration of Geotechnical Data Management
 • Distinction between “Hazard” and “Risk”
 • Groundwork for Standard of Practice
Questions?