New testing technologies used to determine insitu density and moisture content of compacted soil used for construction purposes

John M Lamond Humboldt Mfg Co

What is Compaction?

A simple ground improvement technique, where the soil is densified through external compactive effort.

Why Compact Soil?

Increases load-bearing capacity

Prevents soil settlement and frost damage

Provides stability

Reduces water seepage, swelling and contraction

Reduces settling of soil

Field Compaction

Compaction Testing

Evaluation of density as a result of compactive efforts with rollers and other equipment

Standard quality control measurement on all soil material types at construction sites

Density of a compacted soil is measured and compared to a density previously determined in laboratory tests

Compaction Control Test

Compaction Field Density Tests

Sand Cone Test (ASTM D1556-90)

A small hole (6" x 6" deep) is dug in the compacted material to be tested. The soil is removed and weighed, then dried and weighed again to determine its moisture content. The specific volume of the hole is determined by filling it with calibrated dry sand from a jar and cone device. The dry weight of the soil removed is divided by the volume of sand needed to fill the hole.

Compaction Field Density Tests

Nuclear Density (ASTM D2292-91)

Nuclear Density Meters are a quick and fairly accurate way of determining density and moisture content. The meter uses a radioactive isotope source at the soil surface (backscatter) or from a probe placed into the soil (direct transmission). The isotope source gives off energy (usually Gamma and Neutron rays) which radiate back to the meter's detectors on the bottom of the unit.

Compaction Field Density Tests

ASTM D7698 – 11 Standard Test Method for In-Place Estimation of Density and Water Content of Soil and Aggregate by Correlation with Complex Impedance

Electrical Density Gauge H-4114SD.3F

The product development spanned over 15 years of work from the initial research to the commercialization of a new geotechnical engineering technology for the determination of insitu density and moisture content of soil for use in civil engineering

The research was based on three primary principals of applied geophysics:

Conrad and Marcel Schlumberger (1930)
G.E. Archie's 1941 work
Tixier (1949) and Wyllie and Rose (1950)

Three principals combined and expanded

The objective of the equipment is to provide onsite and immediate in-situ density data for soil materials used in construction.

The data can then be uses for Quality Control and Quality Assurance purposes.

ASTM Approval May 2011

ASTM D7698 – 11 Standard Test Method for In-Place Estimation of Density and Water Content of Soil and Aggregate by Correlation with Complex Impedance

Every soil type has a unique geo-electric signature. When the geo-electric signature is researched and established for a given soil type and integrated with physical properties, that data can then be used to determine the geotechnical field characteristics of the soil under test.

The soil electrical parameters of current (Is), voltage (Vs), and phase (Ps) are recorded

From the electrical soil measurements, the software then calculates resistance (Rs) and capacitance (Cs), the quotient Cs/Rs, and real impedance (Zs)

As the soil density and moisture content values change, the equivalent soil values for R, C and Z will also change

Reported physical properties of the soil – density and moisture content - will also change

The EDG determines these electrical properties of the soil by transmitting a 3.0 MHz radio frequency voltage to the soil through a set of steel probes (darts) driven into the soil.

EDG Theory Electrical Density Test

EDG in Practice

The radio frequency current that is passing through the probes into the soil and the voltage that appears across the probes are measured electronically

Additionally, the electrical phase relationship between the soil current and the probe-to-probe voltage is determined

MBO

EDG in Practice

Material constants are established by conducting pre-construction geotechnical tests.

A series lab tests or side-by-side tests are performed to establish the soil characteristics constants within an acceptable confidence level.

The process of establishing the material constants is called the "Soil Model"

Linear regression – Wet Density

Linear regression – Moisture

Water Mass Per Unit Volume vs C/R

C/R

EDG Field Test

Testing Equipment for

Construction Materials

HUMBOLDT

EDG Schematic

EDG Theory

Actual Depth of Measurement

Steel darts of 5 lengths:

4 inch 6 inch 8 inch 10 inch 12 inch

Lift-thickness Specifications

Lift thickness	State DOTs
6-inch	MA, MT, ND
6-inch (compacted)	CT, KY, NY
8-inch	AL, AZ, CA, DE, FL, ID, IL, IN, IA, KS, ME, MN, MS, MO, OR, SC, VT, VA, <u>WI</u>
12-inch	LA, NH, NJ, OH, TX

EDG Schematic

HUMBOLDT

EDG Reported Values

The EDG reports:

- Wet Density
- Moisture Content

and by calculation:

- Dry Density
 - **Relative % compaction**

Verification Data

The data for verification of the EDG was taken over a 3 year period from 230 tests from 34 different sites

Compared to NDG results, the EDG shows a variation of +/- 2.65% for density and +/-1.55% for moisture content

Verification Data

Verification Data

Material: Crus	hed Concrete	S	pecification: 6F	P1
		SRD	EI	DG
Date	Bulk Density Mg/m ³	Moisture %	Bulk Density Mg/m ³	Moisture %
19/03/13	2.09	9.5	2.115	9.3
19/03/13	2.13	9.3	2.121	9.3
19/03/13	2.13	9.5	2.125	9.3
20/03/13	2.09	9.5	2.157	9.2
20/03/13	2.16	9.8	2.156	9.2
20/03/13	2.11	9.7	2.159	9.2
23/03/13	2.17	9.0	2.162	9.2
23/03/13	2.09	9.9	2.141	9.2
23/03/13	2.15	9.8	2.165	9.2

Testing Equipment for Construction Materials

HUMBOLDT

Material:	Brown Sa	and	Spec	ification:	1 A	
	SRD			NDM	EDG	
Date	Bulk Density	Moisture %	Bulk Density	Moisture %	Bulk Density	Moisture %
Date	Mg/m ³	70	Mg/m ³	70	Mg/m ³	70
21/06/13	1.821	10.3	1.791	11.3	1.849	10.9
21/06/13	1.890	12.0	1.845	12.3	1.865	11.5
21/06/13	1.689	7.5	1.668	7.6	1.636	7.5

Material:	Brown S	Sand & Gra	avel	Spe	cification	6N
		SRD		NDM	E	DG
Date	Bulk Density Mg/m ³	Moisture %	Bulk Density Mg/m ³	Moisture %	Bulk Density Mg/m ³	Moist ure %
23/06/13	2.03	6.8	2.009	7.0	1.990	7.2
23/06/13	-	-	2.002	7.1	1.997	7.3
23/06/13	-	-	1.959	7.7	1.992	7.3

Material:	Chalk		cification:	Class 3		
	SRD			NDM	EDG	
Date	Bulk Density Mg/m ³	Moisture %	Bulk Density Mg/m ³	Moisture %	Bulk Density Mg/m ³	Moist ure %
23/06/13	1.96	20.4	1.898	22.6	1.902	22.6
23/06/13	-	-	1.901	24.3	1.890	23.7
23/06/13	-	-	1.871	23.6	1.877	24.0

Moisture/Density Curve

Introduct	ion Job	Sites Soil Mo	dels Proctor Data	Comm	unications		C C
rt							
ort							
octor Mod	dels	Selected P	roctor Data		Dry Density	% Moisture	
Delete	Add New	Proctor Name:	Proctor3	1	113	5.5	
Proctor Na	ame	Date Created:	9/11/2008 11:33:40 AM	2	117	6.5	
Proctor		Maximum Der	nsity @ Optimum Moisture:	3	123	8	
Proctor	2		123.000	4	118	9	
Procto	r3			5	0	0	
		Proctor Cu	rve				
			-				
		123	-				
		122					
		121					
		120	-				
			_				
		<u>→</u> 119 I18	-				
		a 118	-				
		117	-		×		
		116	-				
		115		/			
		114	1				
		113	-		_	_	
			5 6		7	8	9
					Moist	ure	
	oen Co	nnected EDG: NOI					

Testing Equipment for Construction Materials

Test Data Plots

Testing Equipment for

Construction Materials

HUMBOLDT

GPS Option

Summary

- An alternative test method of determining the in-situ density and moisture content of compacted soil
- No restrictions on use
- Direct measurement of full lift depth up to 12 inch (300mm)
- Immediate on site compaction information

Electrical Density Gauge H-4114SD.3F

Testing Equipment for

HUMBOL

Construction Materials

Electrical Density Gauge H-4114SD.3F

For more information see www.humboldtmfg.com

